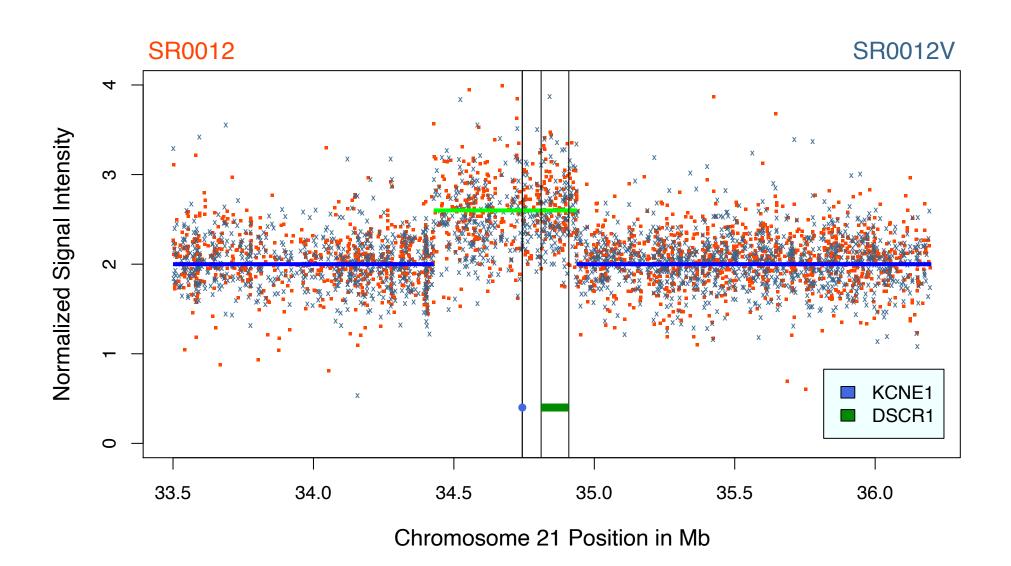


Michael Baudis | ELIXIR Human Data Day | 2021-06-11

chromosome 9

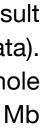
Why hCNV Community?


Structural Genome Variation Data :: Resources and Technologies

- structural genome variations are a major contributor to genetic diseases and cancer
- knowledge about and standards for copy number variations / aberrations (CNV/CNA) has not been in step with NGS & GWAS driven SNV/SNP assessment

Mission statement

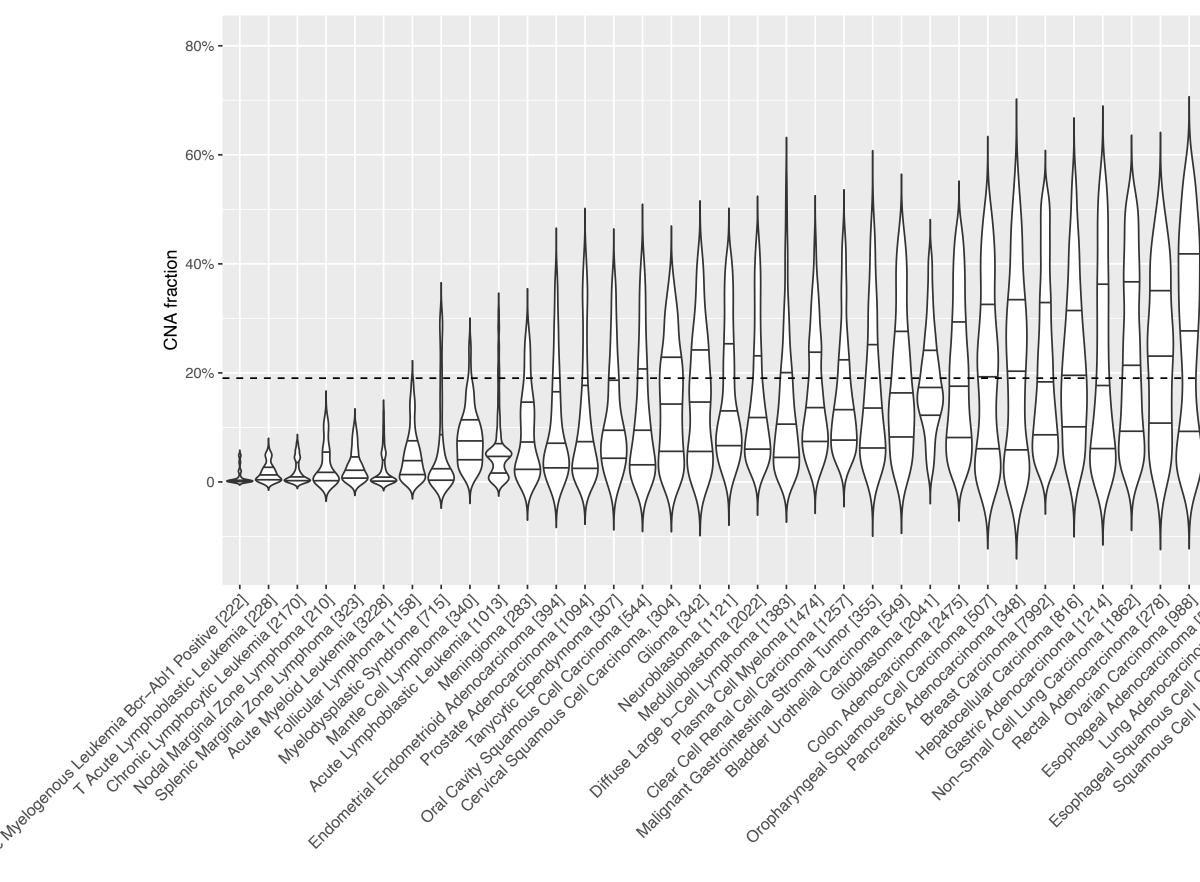
Despite the fact that Copy Number Variations are the most prevalent genetic mutation type, identifying and interpreting them is still a major challenge. The ELIXIR human Copy Number Variation (hCNV) Community aims to implement processes to make the detection, annotation and interpretation of these variations easier



CNV with unknown clinical impact in a case of Silver-Russel Syndrome

Local Affymetrix Genotyping 6 signal distribution pattern and segmentation result in patient SR12 (SR0012, orange data) and his father (SR0012V, steelblue data). In both samples a duplication in the DSCR can be observed, affecting the whole KCNE1 and DSCR1/RCAN coding regions. In contrast, DYRK1A lays ~2.5 Mb distal of the duplication. Only the genes discussed in this article are shown.

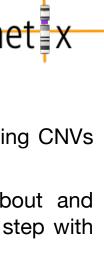
Why hCNV Community?


Structural Genome Variation Data :: Resources and Technologies

- structural genome variations are a major contributor to genetic diseases and cancer
- knowledge about and standards for copy number variations / aberrations (CNV/CNA) has not been in step with NGS & GWAS driven SNV/SNP assessment

Mission statement

Despite the fact that Copy Number Variations are the most prevalent genetic mutation type, identifying and interpreting them is still a major challenge. The ELIXIR human Copy Number Variation (hCNV) Community aims to implement processes to make the detection, annotation and interpretation of these variations easier



progenet

Genome CNV coverage in Cancer Classes

- 43654 out of 93640 CNV profiles; filtered for entities w/ >200 samples
- Single-sample CNV profiles were assessed for the fraction of the genome showing CNVs (relative gains, losses)
- range of medians 0.001 (CML) 0.358 (malignant melanomas)knowledge about and standards for copy number variations / aberrations (CNV/CNA) has not been in step with NGS & GWAS driven SNV/SNP assessment

ELIXIR hCNV Community

Structural Genome Variation Data :: Resources and Technologies

- First meeting of group in 2018
- **ELIXIR Human Copy Number Variation** (hCNV) approved in 2019
- initial implementation study (2019-2021) for community set-up, gap analysis and exploration of technical deliverable

Mission statement

Despite the fact that Copy Number Variations are the most prevalent genetic mutation type, identifying and interpreting them is still a major challenge. The ELIXIR human Copy Number Variation (hCNV) Community aims to implement processes to make the detection, annotation and interpretation of these variations easier

Purpose

The human CNV community (h-CNV) has been officially created in December 2018. It aims to address the major challenge of NGS data interpretation in the era of whole genome sequencing for the most frequent mutation type: Copy Number Variation. Seven topics have been identified during the kick-off meeting and further refined with all h-CNV partners. This ultimately led to the proposal described in this implementation study.

Node	Name of PI
ELIXIR-FR	Christophe Béroud, David Salgado, Marc Hanauer, Victoria Dominguez
ELIXIR-CH	Michael Baudis
ELIXIR-DE	Jan Korbel
EMBL-EBI	Thomas Keane, Fiona Cunningham
ELIXIR-ES	Joaquin Dopazo, Alfonso Valencia, Salvador Capella, Sergi Beltran, Steven Laurie, Gemma Bullich, Laura I. Furlong, Janet Piñero
ELIXIR Hub	John Hancock, Gary Saunders, Kathi Lauer, Leyla Garcia
ELIXIR-NL	Bauke Ylstra, Daoud Sie, Leon Mei, Morris Swertz (UMCG), Lennart Johansson
ELIXIR-NO	Eivind Hovig, Pubudu Samarakoon
ELIXIR-HU	Attila Gyenesei ,Katalin Monostory
ELIXIR-SI	Brane Leskošek, Polonca Ferk, Marko Vidak
ELIXIR-UK	Krzysztof Poterlowicz
Delivery	Starting from June 2019 for a period of 24 months.

Christophe Béroud (ELIXIR France)

David Salgado (ELIXIR France)

Gary Saunders (Human Data Coordinator, ELIXIR Hub)

Michael Baudis (ELIXIR Switzerland)

hCNV Implementation Study 2019-2021 Setting the Scope | Solidifying the Community | First Deliveries

- challenge participants and define the wider landscape as well as future directions
- set of 7 work packages
 - ➡ landscape analysis
 - technical products
 - resource improvement
 - community building & outreach
- regular meetings, website, hackathons...

- WP1 Optimal CNV detection pipelines for research and diagnostics
- WP2 Definition of reference datasets
- WP3 Improvement of community formats for CNV exchange
- WP4 Enabling CNV data discovery in diagnostic and phenotypic context
- WP5 Creation of innovative tools
- WP6 FAIRification of h-CNV databases and datasets
- WP7 Dissemination

hCNV Implementation Study 2019-2021 Setting the Scope | Solidifying the Community | First Deliveries

- highly ambitious goals, beyond available support
 - especially reference / benchmarking dataset generation and pipeline development
- emerging interactions and collaborations with ELIXIR platforms & communities and beyond

➡ Galaxy

GA4GH / ELIXIR Beacon project

- WP1 Optimal CNV detection pipelines for research and diagnostics
- WP2 Definition of reference datasets
- WP3 Improvement of community formats for CNV exchange
- WP4 Enabling CNV data discovery in diagnostic and phenotypic context
- WP5 Creation of innovative tools
- WP6 FAIRification of h-CNV databases and datasets
- WP7 Dissemination

hCNV Implementation Study 2019-2021 Some Achievements and Deliveries

- Benchmarking tools and OpenEbench TransBioNet testing event
- demonstration of CNV datection tools in clinical (cancer) setting
- amending *bio.tools* for extensive list of CNV related analysis tools

https://bio.tools/t?domain=elixir-hcnv

- updating / registering shared hCNV resources at fairsharing.org
- consensus collection of perceived requirements for efficient and effective CNV file and data exchange formats

OPENEBENCH

hCNV Implementation Study 2019-2021 **Some Achievements and Deliveries** F1000 Research F1000Research 2020, 9(ELIXIR):1229 Last updated: 01 JUN 2021 Check for updates

- HGVS satellite meeting Human CNV June 14th 2019 – Göteborg Sweden
- hCNV community workshop ELIXIR All-Hands Lisbon – June 2019
- survey of data annotation formats, including comments on VCF development
- start FAIRification of CNV national / reference databases (BANCCO, Progenetix)
- Community white paper published
- **Biohackathon Paris 2019**
- in 2021 start of shared meetings of subgroup with \bullet Beacon variants scout team

OPINION ARTICLE

The ELIXIR Human Copy Number Variations Community:

building bioinformatics infrastructure for research [version 1;

peer review: 1 approved]

David Salgado¹, Irina M. Armean², Michael Baudis³, Sergi Beltran^{4,5}, Salvador Capella-Gutierrez^{6,7}, Denise Carvalho-Silva^{2,8}, Victoria Dominguez Del Angel¹⁰⁹, Joaquin Dopazo¹⁰¹⁰, Laura I. Furlong¹¹¹, Bo Gao¹, Leyla Garcia^{2,12,13}, Dietlind Gerloff¹⁴, Ivo Gut^{4,5}, Attila Gyenesei¹⁵, Nina Habermann¹⁶, John M. Hancock¹³, Marc Hanauer¹⁷, Eivind Hovig^{18,19}, Lennart F. Johansson²⁰, Thomas Keane², Jan Korbel¹⁶, Katharina B. Lauer¹³, Steve Laurie⁴, Brane Leskošek²¹, David Lloyd¹³, Tomas Marques-Bonet²², Hailiang Mei²³, Katalin Monostory²⁴, Janet Piñero¹¹, Krzysztof Poterlowicz¹²⁵, Ana Rath¹⁷, Pubudu Samarakoon²⁶, Ferran Sanz¹¹, Gary Saunders¹³, Daoud Sie²⁷, Morris A. Swertz²⁰, Kirill Tsukanov², Alfonso Valencia^{6,7,28}, Marko Vidak²¹, Cristina Yenyxe González², Bauke Ylstra²⁹, Christophe Béroud^{1,30}

¹Aix Marseille Univ, INSERM, MMG, Marseille, France

²European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK

³Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland ⁴CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 4, Barcelona 08028, Spain

⁶Barcelona Supercomputing Center (BSC), Barcelona, Spain

⁷Spanish National Bioinformatics Institute (INB)/ELIXIR-ES, Barcelona, Spain

⁸Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK

⁹Institut Français de Bioinformatique, UMS3601-CNRS, CNRS, Paris, France

¹⁰Clinical Bioinformatics Area, Fundación Progreso y Salud, CDCA, Hospital Virgen del Rocio, Sevilla, Spain

¹¹Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of

Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain

¹²ZB MED Information Centre for Life Sciences, Cologne, Germany

¹³ELIXIR Hub, Hinxton, UK

¹⁴Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg

¹⁵Szentágothai Research Center, University of Pécs, Pécs, Hungary

¹⁶Genome Biology, European Molecular Biological Laboratory, Heidelberg, Germany

¹⁷Orphanet, INSERM, Paris, France

¹⁸Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway

¹⁹Centre for bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway

²⁰Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

²¹Faculty of Medicine - ELIXIR Slovenia, University of Ljubljana, Ljubljana, Slovenia

²²Institute of Evolutionary Biology (UPF-CSIC), Catalan Institution for Research and Advanced Studies, Barcelona, Spain

²³Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands

²⁴Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary

²⁵Centre for Skin Sciences, University of Bradford, Bradford, UK

⁵Universitat Pompeu Fabra (UPF), Barcelona, Spain

hCNV Implementation Study 2019-2021 **Some Achievements and Deliveries** ELIXIR hCNV 2019-21 Deliverable D3.2

- survey about genomic variation file formats and their use, suitability for representing CNV data
- part of the survey was focused specifically on VCF, a key GA4GH standard at the intersection of human and computer readable formats
- Results
 - ➡ BED-like formats are frequently used, but the better defined flavours are not optimal for CNVs and other SVs
 - → JSON w/ schema has potential, but still misses finalized GA4GH schemas (VRS emerging) and suffers "readability" issues for non-bioinformatics customers
 - → VCF was considered as a/the variant standard file format, but not "CNV-friendly" in v4.2 and in th eexisting tools for I/O handling of CNV data

Project Title:	First hCNV Community Implementation Study
Deliverable title:	Create a consensus collection of perceived requirements for efficient and effective CNV file and data exchange formats
WP No.	3
WP Title	Improvement of community formats for CNV exchange
Contractual delivery date:	30.11.2019
Actual delivery date:	12.12.2019
WP leads:	Thomas Keane
Partner(s) contributing to this deliverable:	EMBL-EBI

Report authors: Kirill Tsukanov¹, Sundararaman Venkataraman, Giselle Kerry, Thomas Keane (EMBL-EBI)

2. Results		3
	2.1. Feedback overview	3
	2.2. Terminology	4
	2.3. Existing file formats	4
	2.3.1. VCF (Variant Call Format)	4
	2.3.2. BED and related tab-separated formats	5
	2.3.3. JSON with a schema	5
	2.3.4. Other formats	5
	2.4. Opinion on CNV representation in VCF	6
	2.5. Requirements for CNV formats of the future	6
	2.6. Conclusions. Note about use cases	7
	3. Impact	8

hCNV Implementation Study 2019-2021

Some Achievements and Deliveries

- Close interaction with Beacon "scout" teams
 - ➡ use case driven (BANCCO RD && Progenetix - cancer) development of essential query standards for the upcoming Beacon v2

Beacon Scouts: Genomic Variants Use Cases & Example

This document develops a set of genomic variant types and associated query formats to be su Beacon protocol. The initial development focuses on the possibly limited, but unambiguous defi formats, driven and documented through real-world use cases

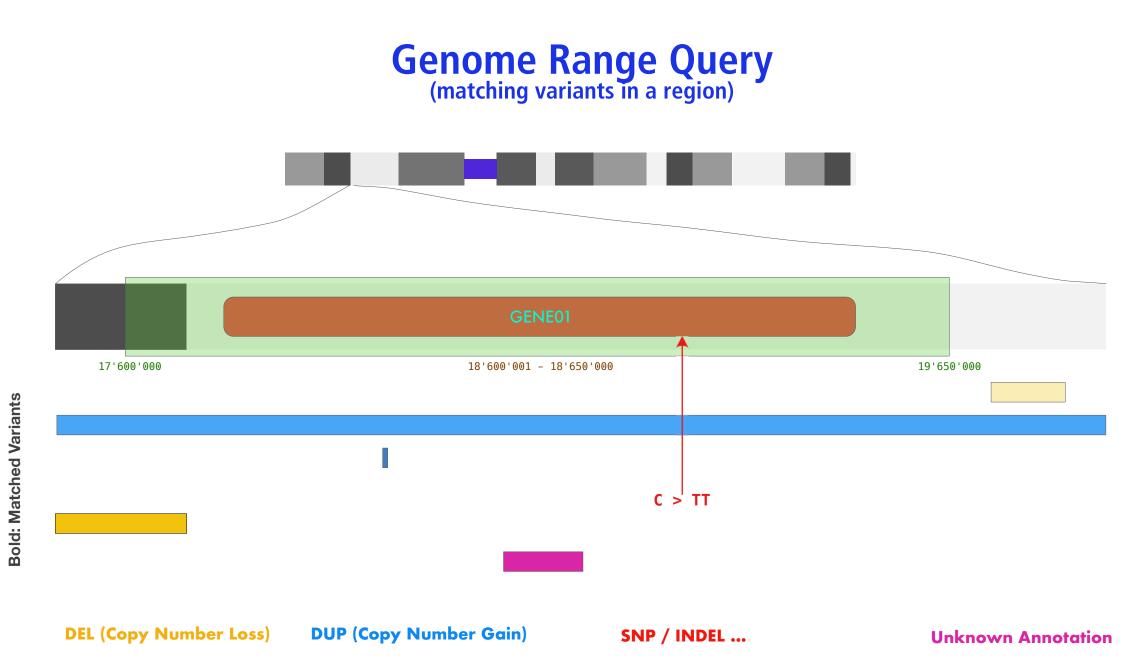
References

Conventions Followed in the Document

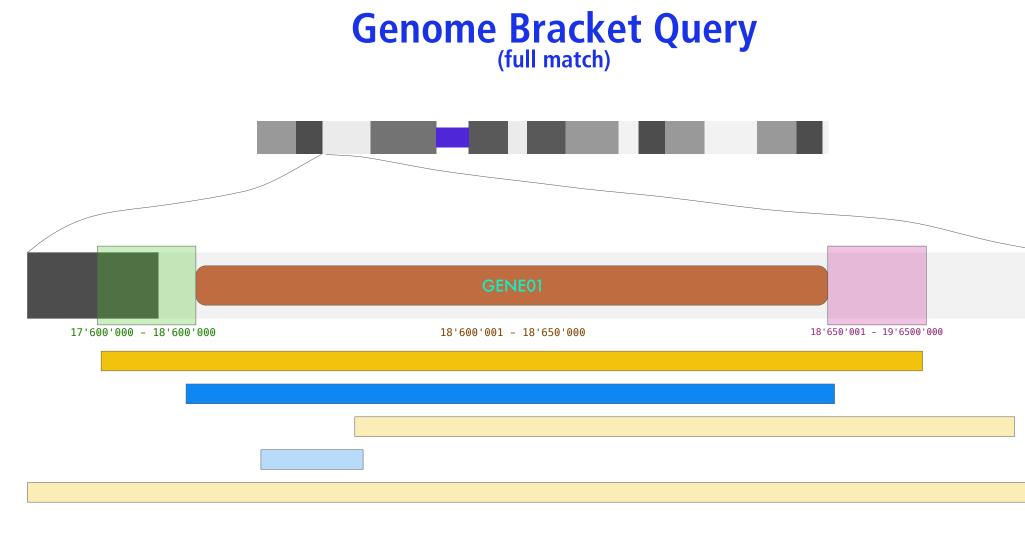
Use of Positional Parameters

Variant Types, Documentation and Example Queries

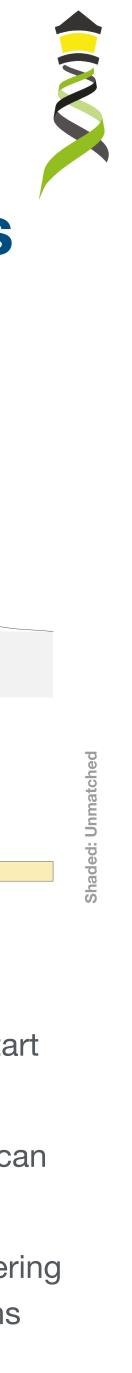
INS (Insertion) DEL (Deletion) DUP (Duplication) Amp (DUP more than 2) CN type of approach LOH (loss of representation of second allele, with or without copy number change) INV (inversion) TL (Translocation) Proposal: BRK (Breakpoint) ME (Mobile elements insertion /deletion) CNV - (non directional CNVs) - do we allow cnv queries? / complex CNVs Tandem Duplication



11


	DUP (Duplication)				
_	Definitions:				
_		A sequence alteration whereby the copy number of a given region is greater than t			
	-	nce (copy number gain).			
	 CNV query resolv CNV loss / CNV g 	ves to DUP or DEL or CNV (and their equivalents -> see DUP, DEL), tandem dups? gain)			
	Examples below based of	on a specific study (<u>https://doi.org/10.1016/j.tjog.2018.06.018</u>)			
	Example: Find duplication	ions involving the whole locus (chr2:54,700,000-63,900,000)			
	-	vid Salgado & Michael Baudis			
_	Notes:	n application of a Bracket Query			
_		atched duplication events start 5` of the region and end 3` of it.			
_		the positions, this requires knowledge about the maximum value of the reference ba			
_		of a very large one exceeding chromosome size; this example here uses a lazy "j			
_	bigger th	nan chr2" value).			
_	Ouers etructure				
_	Query structure:				
_	referenceName: "2"				
	start:[0,5470	00000]			
	start:[0,5470 end:[63900000				
ed by 1 1 of que),242193529]			
	end:[63900000 variantType:),242193529]			
	<pre>end:[63900000 variantType: ?referenceNam</pre>	0,242193529] "SO:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP			
of que	end:[63900000 variantType: ?referenceNam Genomic regio),242193529] "SO:0001742"			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars:	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars:	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	<pre>end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1:</pre>	D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2:	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2: Match3:	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2:	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	<pre>end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2: Match3: Match4:</pre>	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	<pre>end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2: Match3: Match4: Not Matched</pre>	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			
of que	<pre>end:[63900000 variantType: ?referenceNam Genomic regio Query Range Start pars: End pars: Matched variants Match1: Match2: Match2: Match4: Not Matched No Match1:</pre>	<pre>D,242193529] "S0:0001742" me=2&start=0,54700000&end=63900000,242193529&variantType=DUP on:<=</pre>			

Beacon v2: Extended Variant Queries Range and Bracket queries enable positional wildcards and fuzziness



- Genome Range Queries provide a way to "fish" for variants overlapping an indicated region, e.g. the CDR of a gene of interest
- Additional parameters (e.g. variant type, regerence or alternate bases) limit the scope of the responses
- new Beacon v2 size parameters to limit structural variants (e.g. "focal" CNVs)

DEL (Copy Number Loss) DUP (Copy Number Gain)

- Genome Bracket Queries allow to search for structural variants with start and end positions falling into defined sequence ranges
- allows to query any contiguous genomic variant (and in principle also can step in for range queries)
- typical use case is e.g the query for variants such as duplications covering the whole CDR of a gene, while limiting the allowed start or end regions

2x hCNV Implementation Studies 2021-2023

Beacon and beyond – Implementation-driven standards Reference hCNV datasets, use-case workflows and and protocols for CNV discovery and data exchange benchmarking

The ELIXIR human CNV Community (hCNV) was created in December 2018. In two years contributions to the field have been numerous (ELIXIR IS, Rare Diseases, Federated Human Data, Beacons, GA4GH, EJP-RD and Beyond 1 Million Genomes - B1MG). The Community now aims to address the major challenge of NGS data interpretation in the era of whole genome sequencing: Copy Number Variation. During the first commissioned service offered as a starting grant, the Community has identified various gaps to proceed with CNV tools benchmarking and in particular for Exome and targeted sequencing, which are by far the most widely used technologies in diagnostic laboratories and in research. Within this implementation study we want to provide solutions and bioinformatic infrastructure solutions to fill identified gaps, and to make these biomedical reference materials available (i.e. via Open Science) to the various communities and platforms.

Interactions and utility to other projects

ELIXIR platforms: Data, Tools, Interoperability, Training

ELIXIR Communities: hCNV, Galaxy, Rare diseases, Federated Human Data

National and International projects: EJP-RD, B1MG, EOSC-Life, EOSC-Pillar

The initial 2019-2021 hCNV community implementation study employed a set of perceived needs to a) deliver first community standards and procedures; b) identify intersections with other ELIXIR communities and stakeholders in ELIXIR connected organizations, such as GA4GH; and c) to streamline priorities for relevant, achievable deliveries of hCNV community projects.

This proposal for an hCNV implementation study focuses on those potential high-value targets for data access and delivery, using reference resources and community stakeholder engagement to directly implement and test hCNV resources aligned with ELIXIR ecosystems.

The main target here will be the empowerment of the Beacon protocol, to act as standard for federated hCNV discovery and data delivery, in conjunction with additional GA4GH derived standards.

Intersecting ELIXIR Platforms, Communities and Projects:

- ELIXIR Galaxy Community
- ELIXIR AAI Infrastructure Service
- ELIXIR Compute Platform
- ELIXIR Training Platform •
- ELIXIR FHD Community
- ELIXIR Health Data Focus Group •
- ELIXIR Beacon Strategic Implementation Study
- ELIXIR Interoperability Platform

External Projects and Partners:

- EJP-RD
- GA4GH (Discovery, Genomic Knowledge Standards, Phenopackets)

hCNV Implementation Studies 2021-2023 No. 1 **Reference hCNV datasets, use-case workflows and benchmarking**

- only limited datasets exist to test and benchmark tools WP1 - Dataset selection and for the analysis of CNV and structural variations generation
- recent datasets focused on high-quality Whole Genome Sequencing (WGS) analyses but not on the most commonly used Whole Exome Sequencing (WES) or genomic array technologies
- generation of publicly accessible reference sets (raw and interpreted CNV data) for a variety of technological platforms will allow the hCNV community to generate the mandatory material
- creation of "control datasets" required by many detection tools
- complement standardization and benchmarking efforts such as the "Genome in a Bottle" initiative
- integrate with Galaxy community & platforms

- WP2 Analyse and Compare CNV with other Benchmarking initiatives
- WP3 Exploitation of the datasets by the Galaxy Community
- WP4 Training and dissemination

hCNV Implementation Studies 2021-2023 No. 2

- reinforce work on priority areas established in the current WP1 - hCNV community reference hCNV Implementation Study resources
- extend collaborations with the Rare Diseases and Galaxy Communities, EJP-RD and GA4GH
- Expected outcomes
 - shared CNV resources testing advanced versions of the Beacon protocol
 - integration of GA4GH standards such as Phenopackets in such resources
 - ➡ tools for data ingestion and export for standard formats (e.g. VCF, Phenopackets) and CNV-specific improvements of such standards
 - ELIXIR AAI demo on clinical and research hCNV resources
 - demonstration of Galaxy pipeline adoption for real-world hCNV data analysis projects
- connecting to international partners, e.g. Cancer Genomics Consortium (U.S.)



Beacon and beyond — Implementation-driven standards and protocols for CNV discovery and data exchange

- WP2 hCNV Resources and Beacon
- WP3 Galaxy Community Intersection and Data Exchange
- WP4 Workflows and Tools for hCNV Data Exchange Procedures
- WP5 Training and dissemination

hCNV Implementation Studies 2021-2023 No. 2

"Galaxify", "Beaconize" & "Phenopack" Progenetix & RD-CNVdb prototypes

Beacon and beyond — Implementation-driven standards and protocols for CNV discovery and data exchange

- WP1 hCNV community reference resources
- WP2 hCNV Resources and Beacon
- WP3 Galaxy Community Intersection and Data Exchange
- WP4 Workflows and Tools for hCNV Data Exchange Procedures
- WP5 Training and dissemination

Beacon & Phenopackets Data discovery and delivery using standardized GA4GH

formats and schemas

- modern standards and protocols such as Beacon v2 & Phenopackets v2 are essential for federation and exchange of biomedical data
- emerging / established principles are the use of hierarchical coding systems and with widespread use of CURIEs
- other formats based on international standards, e.g.
 - ► ISO (ISO 8601 time & period, ISO 3166 country codes ...)
 - ► IETF (GeoJSON ...)
 - ► W3C (CURIE ...)
- these standards become pervasive throughout GA4GH's ecosystem
 - Beacon query filters correspond well to Phenopackets data

Phenopackets as supported protocol for Beacon data delivery


```
"data_use_conditions" : {
  "label" : "no restriction",
  "id" : "DU0:000004"
},
"material" : {
  "id" : "EF0:0009656",
  "label" : "neoplastic sample"
},
  "ageAtDiagnosis": "P25Y3M2D"
},
"sampled_tissue" : {
    "id" : "UBERON:0002037",
    "label" : "cerebellum"
},
"histological_diagnosis" : {
    "id" : "NCIT:C3222",
    "label" : "Medulloblastoma"
},
```


hCNV Implementation Studies 2021-2023 **Focus on Integration with ELIXIR Platforms and Communities - and beyond**

- original 2019-2021 implementation study provided visibility and established connections for new studies
- instrumental were Biohackathons, use case & standards surveys and co-participation of group members
- future work plans to leverage the resources of participants through pre-established interactions and synergies
- 2 independent studies provide clearer definitions of deliverables and individual scopes

Alexander Kanitz Anthony Brookes Babita Singh Björn Grüning Christophe Béroud David Salgado Jordi Rambla Kirill Tsukanov Krzysztof Poterlowicz Michael Baudis Salvador Capella-Gutierrez Sergi Beltran Steven Laurie Tim Beck **Timothee Cezard**

CH UK ES DE FR FR ES **EMBL-EBI** UK CH ES ES ES UK **EMBL-EBI**

